头像
王连华

发布于:暂无信息 点击数:5353

暂无信息

基本信息

姓名:王连华

出生年月:197511

学位:博士image.png

职称:教授

系所:湖南大学/土木工程学院

 

联系方式:

湖南大学土木工程学院,410082E-mail: Lhwang@hnu.edu.cn

电话:0731-8865825115273172528


教育背景

2001/092005/05,湖南大学土木工程学院,桥梁与隧道专业,工学博士

1999/092001/05,湖南大学工程力学系,固体力学专业,工学硕士


工作履历

2005/.052007/06,讲师,湖南大学土木工程学院

2007/062009/09,副教授,湖南大学土木工程学院

2009/092010/01Researcher Fellow, University of Rome ‘La Sapienza’, Rome, Italy

2010/012013/10,副教授,湖南大学土木工程学院

2013/102014/11,访问学者,University of Illinois at Urbana-Champaign

2014/112017/12,副教授,湖南大学土木工程学院

2018/01—至今,   教授,湖南大学土木工程学院


学术兼职

理事:湖南省力学学会;;湖南省应力力学学会

编委:《动力学与控制》;Journal of Vibration Testing and System Dynamics

审稿人:Journal of Applied Mechanics, Engineering Structures, Nonlinear Dynamics, Journal of Sound and Vibration,《物理学报》,《计算力学学报》等国内外20余期刊审稿人.


研究领域

(1)大跨桥梁非线性;

(2)桥梁抗震与振动控制

(2)结构动力学与非线性振动;

(4)计算结构动力学。

科研项目

[1] 2006.1-2008.12. 索结构中的模态作用研究. 国家自然科学基金. 17万,主持人.

[2]2010.1-2012.12. /梁运动作用下的拉索大幅振动机理及其疲劳寿命评估研究. 国家自然科学基金. 37万,主持人.

[3] 2010.1-2012.12. 斜拉索的大幅振动与控制. 新世纪优秀人才支持计划. 50万,主持人.

[4] 2018.1-2020.12.斜拉梁非线性模态作用与能量传输研究.湖南省自然科学基金. 5万,主持人.

[5] 2009.1-2010.12. 支座运动作用下的拉索大幅振动与疲劳寿命评估研究. 湖南省科技计划. 2万,主持人.

[6] 2010.1-2011.12. 大跨桥梁桩的非线性动力响应研究. 湖南省科技计划. 2, 主持人.

[7]2016.01-2017.12. 大跨径悬索桥梁端位移测控技术研究. 交通运输部建设科技项目.40, 主持人.

[8]2011.01-2014.12. 大跨度斜拉桥的非线性建模理论及其动力学研究. 国家自然科学基金(重点项目). 220, 主要参与人(2).

[9] 2008.1-2010.12. 索—梁组合结构非线性动力学研究. 国家自然科学基金. 39, 主要参与人(2).

[10]2005.01-2007.12. 非完整力学系统的混沌研究. 国家自然科学基金. 16, 主要参与人(2).

[11]2016.01-2019.12. 基于非接触振型测试及压电阻抗技术的桥梁索结构状态识别国家自然科学基金. 62, 主要参与人(2).

[12]2002.01-2005.12. 大跨度钢管混凝土拱桥的非线性动力稳定性研究. 湖南省交通厅项目. 70, 主要参与人(3).

[13]2004.06-2006.12. 斜拉拱桥极限承载能力研究和主桥整体模型实验. 湘江四大桥建设科技项目. 108, 主要参与人(3).

[14]2003.01-2006.12. 钢管混凝土拱桥设计、施工及养护关键技术研究. 西部交通建设科技项目. 40, 主要参与人(2).

[15]2013.07-2017.06. 大跨径钢桁加劲梁悬索桥关键技术研究. 交通运输部建设科技项目. 120, 主要参与人(4).


学术成果

近年来,在国内外不同学术刊物上发表论文140余篇,其中SCI论文40余篇,EI收录70余篇.代表性论文主要有:

国际刊物:

[1]Wang L, Ma J, Yang M, Li L, Zhao Y. Multimode dynamics of inextensional beams on the elastic foundations with two-to-one internal resonance. Journal of Applied Mechanics, ASME. 2013, 80: 041026-1-10.

[2]Wang L, Ma J, Zhao Y, Liu Q. Refined modeling and free vibration of inextensional beams on the elastic foundation. Journal of Applied Mechanics, ASME. 2013, 80: 061016-1-10.

[3]Zhang X, Peng J, Wang L. Parametric resonances in the two-to-one resonant beasm on elastic foundation. Nonlinear Dynamics. 2014,77: 339-351.

[4]Wang L, Ma J, Peng J, Li L. Large amplitude vibration and parametric instability of inextensional beams on the elastic foundation. International Journal of Mechanical Sciences. 2013,67:1-9.

[5]Wang L, Peng J, Jin Y, Ma J. Synchronous dynamics and bifurcation analysis in two delay coupled oscillators with recurrent inhibitory loops. Journal of Nonlinear Science.2013, 23: 283-302.

[6]Wang L, Rega G. Modelling and transient planar dynamics of suspended cables with moving mass. International Journal of Solids and Structures. 2010, 47(20): 2733-2744.

[7]Wang L, Zhao Y. Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. International Journal of Solids and Structures, 2006, 4: 7800-7819.

[8]Zhao YY, Wang LH, Chen DL, Jiang LZ. Nonlinear dynamic analysis of the two-dimensional simplified model of an elastic cable. Journal of Sound and Vibration. 2002, 255: 43-59.

[9]Wang L, Zhao Y. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. Journal of Sound and Vibration, 319(1-2): 1-14.

[10]Wang L, Zhao Y. Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitation. Journal of Sound and Vibration. 2009, 319: 1-14.

[11]Zhao Y, Wang L. On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance. Journal of Sound and Vibration. 2006, 294: 1073-1093.

[12]Wang L, Zhao Y. Non-linear planar dynamics of suspended cables investigated by the continuation technique. Engineering Structures. 2007,29: 1135-1144.

[13]Wang L, Ma J, Li L, Peng J. Three-to-one resonant responses of inextensional beams on the elastic foundation. Journal of Vibration and Acoustics, ASME. 2013, 135(1):011015-1-10.

[14]Wang L, Zhao Y, Rega G. Multi-mode dynamics and out-of-plane drift in suspended cable using the kinematically condensed model. Journal of Vibrations and Acoustics, ASME. 2009, 131(6): 061008-1-9.

[15]Wang L, Zhang X, Huang S, Li L. Measured frequency for the estimation of cable force by vibration method. Journal of Engineering Mechanics. ASCE. 2015. 141(2): 06014020-6.

[16]Peng J, Wang L, Zhao Y, Zhao Y. Bifurcation analysis in active control system with time delay feedback. Applied Mathematics and Computation. 2013,219: 10073-10081.

[17]Li L, Hu S, Wang L. Seismic fragility assessment of multi-span cable-stayed bridges with high piers. Bulletin of Earthquake Engineering Journal. 2016.

[18]Guo T, Kang H, Wang L, Zhao Y. Cable’s mode interactions under vertical support motions: boundary resonant modulation. Nonlinear Dynamics. 2016, 84: 1259-1279.

[19]Zhao YY, Wang LH, Chen DL, Jiang LZ. Nonlinear dynamic analysis of the two-dimensional simplified model of an elastic cable. Journal of Sound and Vibration. 2002, 255: 43-59.

[20]Guo T, Kang H, Wang L, Zhao Y. Cable dynamics under non-ideal support excitations: Nonlinear dynamic interactions and asymptotic modelling. Journal of Sound and Vibration.2016,384:253-272.

[21]Pei B, Li L, Shao X, Wang L, Zeng Y. Field measurement and practical design of a lightweight composite bridge deck. Journal of Constructional Steel Research. 2018, 147: 564-574.

[22] Guo T, Kang H, Wang L, Zhao Y.. Nonlinear vibrations for double inclined cables-deck beam coupled system using asymptotic reductions. International Journal of Non-Linear Mechanics, 2018, (In Press)

[23] Guo T, Kang H, Wang L, Zhao Y.. Modal resonant dynamics of cables with a flexible support: a modulated diffraction problem. Mechanical Systems and Signal Processing, 2018, 106: 229-248

[24]Zhou C, Li L, Wang L. Improved Softened Membrane Model for Prestressed Composite Box Girders with Corrugated Steel Webs under Pure Torsion. Journal of Constructional Steel Research, 2019, 153: 372-384

国内刊物:

[1]马建军, 王连华, 赵跃宇. 弹性地基梁上有限长梁的动力学建模.中国科学: 物理学, 力学, 天文学. 2013, 43: 765-771.

[2]赵跃宇, 王连华, 刘伟长, 周海兵. 悬索非线性动力学中的直接法与离散法. 力学学报. 2005, 37: 329- 338.

[3]王连华, 赵跃宇. 受支承运动作用的拉索大幅振动. 土木工程学报, 2008, 41(8): 65-71.

[4]王连华, 赵跃宇. 悬索在考虑13内共振情况下的动力学行为. 固体力学学报. 2006, 27, 230-236.

[5]彭剑, 赵珧冰, 孙测世, 王连华. 磁流变阻尼器—斜拉索控制系统中的时滞效应. 工程力学. 2013, 31(4):  155-159.

[6]王连华,赵跃宇,易壮鹏. 系杆对钢管混凝土拱桥抗震性能的影响. 地震工程与工程振动, 2007, 27: 59-65.

[7]王连华,赵跃宇, . 悬索在外激励作用下的1: 3内共振分析I: 离散法. 计算力学学报.2007, 24: 654- 658.

[8]赵珧冰, 孙测世, 彭剑, 王连华. 不同初拉力拉索对温度变化的敏感性分析. 中南大学学报. 2014, 5: 1680-1685.

[9]胡思聪, 王连华,李立峰,吴钊华. 非一致氯离子侵蚀下近海桥梁时变地震易损性研究. 土木工程学报.已接收.

国际学术会议:

[1]Ma J, Peng J, Wang L, Zhao Y. Modal interaction in the inextensional beams on the elastic foundations. The 23rd International Congress of Theoretical and Applied Mechanics, 2012:8

[2]Wang L, Zhao Y. Large amplitude vibration and modal interaction on shallow suspended cable with multiple internal resonances. Proceedings of the Third International Conference on Dynamics, Vibration and Control. 2010:130

教材与专著

1. 李立峰, 王连华. ANSYS土木工程实例详解. 人民邮电出版社,2015.


奖励与荣誉

教育部新世纪优秀人才计划入选者,2010

2017年度湖南省优秀硕士学位论文指导教师