header
潘怀荣

发布于:2018-10-18 星期四 13:01:31 点击数:3825

1.png

潘怀荣

教授、博士生导师

Tel:

E-mail:hrpan@hnu.edu.cn


基本信息

潘怀荣,男,教授,博士生导师。2005年在东北师范大学获得生物技术专业学士学位,2012年在中国科学院遗传与发育生物学研究所获得博士学位。2013年至2017年8月在美国马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)生物化学与分子生物学系进行博士后研究。2017年9月入职湖南大学生物学院。

研究方向是豆科植物固氮共生的分子机制,在植物-微生物互作的研究中取得了多项重要发现,近5年来,在国际主流学术期刊Nature Plants、Plant Physiology、The Plant Journal等杂志上发表多篇第一作者论文。



   


教育背景


20059-201211月,中国科学院大学,研究生(硕博连读),遗传学专业;


20019-20057月,东北师范大学,本科,生物技术专业。



Education Experiences:



2005/09-2012/12 Ph.D. Genetics, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, China.

   

2001/09-2005/07 B.S. Biotechnology, Northeast Normal University, China.

   



工作履历


2017年9月至今,湖南大学生物学院,教授,博士生导师;


20138月至20178月,马萨诸塞大学阿默斯特分校生物化学与分子生物学系,博士后;



Working experiences:


2017/09-present Professor, College of Biology, Hunan University, Changsha, China.

   

2013/08-2017/08 Postdoctoral Research Associate, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States.

   






研究领域


豆科植物固氮共生的分子机制

 

  在人口占全世界比例不到20%的情况下,我国的氮肥使用总量占全球的比重超过1/3,造成了粮食生产成本高、农民负担重、环境污染严重等一系列问题。在增加产量的同时,寻求环境友好的高效氮素源是目前农业发展的重要问题。

 

  通过产生特异的器官根瘤,豆科植物可以和根瘤菌发生固氮共生作用(Nitrogen Fixing Symbiosis),进而获得有机氮。在豆科植物固氮共生过程中,根瘤菌通过根毛细胞进入植物根瘤内,并且完全进入植物的根瘤细胞,成为与叶绿体和线粒体类似的亚细胞器结构-类菌体(Bacteroid);后者在植物分泌的效应蛋白,如根瘤富半胱氨酸多肽(Nodule Cysteine Rich Peptides,简称NCR多肽)的作用下,发生一系列细胞形态、细胞周期和基因表达的变化(称为类菌体分化,Bacteroid Differentiation);分化后的类菌体会激活固氮还原酶复合体,把大气中的无机氮还原为有机氮,提供给植物。“豆科植物固氮共生”不仅是真核生物-微生物相互作用的重要研究模型,更可以为减少农业生产过程中的化肥施用提供理论依据。

 

1)正向遗传学方法发现固氮共生过程中的关键调节基因

 

  潘怀荣教授计划通过正向遗传学方法,以固氮共生突变体为出发点,运用图位克隆和全基因组测序等方法,寻找新的固氮共生调控基因,并对目的基因的功能进行解析。重点关注两类基因:(1)编码植物效应蛋白的基因;(2)控制效应蛋白分泌的植物胞内运输调控基因,例如,根瘤细胞囊泡运输的调节基因。对这些基因的鉴定和功能分析,将有助于系统地阐释固氮共生过程中植物调控类菌体生化代谢和基因转录的机制,特别是鉴定出的新效应蛋白将为基因工程改造豆科植物提供理论依据。

 

2)基因编辑的方法研究调控豆科植物固氮共生的基因家族

  参与调控固氮共生的蛋白往往以蛋白家族的形式存在,相互之间存在功能冗余,通过传统的正向遗传遗传筛选就很难发现它们的功能。潘怀荣教授课题组通过建立蒺藜苜蓿CRISPR-Cas9基因编辑系统,计划运用基因编辑技术对这些蛋白家族的多个基因同时进行敲除,结合基因编辑突变体的遗传学分析和目的蛋白的生化功能分析,对目的蛋白在固氮共生信号网络中的功能进行研究。

Figure 9.3.7.1.jpg


The molecular mechanism of legume nitrogen fixing symbiosis


In the natural environment plants are continuously interacting with a large microbial community. Soil microbes colonize the rhizosphere, endophytes invade the endosphere and pathogens infect plant tissues and cause disease. Most plants also form beneficial interactions with arbuscular mycorrhizal (AM) fungi, developing mycorrhized roots, which provide phosphorous and micro nutrients to plants in exchange for fixed-carbon. A subset of plants, including plants of the legume family, develops nitrogen-fixing symbiosis in specialised organs, root nodules. This sophisticated symbiosis with rhizobia provides legumes with nitrogen fixed by rhizobia hosted inside plant cells of the nodules. Increased understanding of plant-microbe interactions could lead to breakthroughs in breeding crops with improved symbiosis while maintaining robust disease resistance world widely.

 

During the process of nitrogen fixing symbiosis, rhizobium bacteria will enter plant nodule through root hair cells. After entering into nodule cells, rhizobia become mitochondria- and chloroplast- like subcellular organelle, and is named bacteroid. Under the effect of host proeins and peptides, bacteroid will elongate and undergo many other changes, named bacteroid differentiation. Differentiated bacteroid will activate the nitrogen reductase complex and fix nitrogen in the atmosphere and provide them to the plant hosts. legume nitrogen fixing symbiosis is not only an important research model for studying the interaction between eukaryote and bacteria, can also provide theoretical basis for reducing chemical fertilizer application in agricultural practice.

 

(1) Forward genetics methods to identify key regulatory genes in the process of nitrogen fixing symbiosis

 

Starting from fixation minus mutants, we will use forward genetics methods to identify novel regulatory genes of nitrogen fixing symbiosis, and will perform functional analysis of the identified genes.

 

(2) Gene editing methods to study key gene families regulating legume nitrogen fixing symbiosis

 

Many genes regulating nitrogen fixing symbiosis tend to belong to the same gene family and have functional redundancy, thus by the traditional forward genetics methods we will unable to reveal the functions of these genes. We will utilize the CRISPR-Cas9 gene editing technique to knock out the genes of the same gene family spontaneously, and study the function of these genes by a combination of state-of-art research techniques.


image.png









科研项目

 国家自然科学基金面上项目 蒺藜苜蓿固氮共生过程中植物宿主通过调节LIN的表达控制根瘤菌侵染的机制 2019-2022


学术成果

Publications


Pan, H., Stonoha-Arther C, Wang, D. (2018). Medicago plants control nodulation by regulating proteolysis of the receptor-like kinase DMI2. Plant Physiology 177:792-802.


Pan, H., Wang, D. (2017). Nodule cysteine-rich peptides maintain a working balance during a nitrogen-fixing symbiosis. Nature Plants 3:17048.


Pan, H.*, Oztas, O.*, Zhang, X., Wu, X., Stonoha, C., Wang, E., Wang, B., and Wang, D. (2016). A symbiotic SNARE protein generated by alternative termination of transcription. Nature Plants 2:15197. (*, equal contribution).


Pan, H., Liu, S., and Tang, D. (2012). HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. The Plant Journal 69:831-843.


Pan, H., Liu, S., and Tang, D. (2012). The THO/TREX complex functions in disease resistance in Arabidopsis.Plant Signaling & Behavior 7:422-424.




奖励与荣誉

2018年 湖湘高层次人才聚集工程-创新人才

2017年 湖南省青年百人计划

2017年 湖南大学“岳麓学者”

2017 Postdoc Professional Development Small Grant, UMass Amherst

2017 “Next Generation Scientist Symposium” Travel Award, New Phytologist

2012 益海嘉里奖学金, 中国科学院遗传与发育生物学研究所


Awards


2018  Huxiang High Level Talent Gathering Project-Innovative Talent

2017  Youth 100 Talent Program of Hunan Province

2017  "Yuelu Scholar" of Hunan University

2017  Postdoc Professional Development Small Grant, UMass Amherst

2017  “Next Generation Scientist Symposium” Travel Award, New Phytologist

2012  "Yihaijiali" Scholarship, Institute of Genetics and Developemntal Biology, Chinese Academy of Sciences