header
范长岭

发布于:2018-03-09 星期五 15:09:24  点击数:14088

主要从事新能源材料、锂(钠)离子电池新型正、负极材料、新型炭材料的研究开发工作,欢迎具有材料、化学等相关专业背景的本科生、硕士生加入课题组,攻读硕士、博士研究生学位。

联系方式:手机:13975152382E-mailfancl@hnu.edu.cn

20年来,项目组潜心研究,取得一些重要的研究成果,其中一些具有重要的实际应用和产业化前景。



基本信息

        范长岭,男,1977年出生,河南人;工学博士、副高级职称(高级实验师、博(硕)士生导师。

        自2005年3月进入材料学院工作以来,主要从事无机非金属材料专业的实验教学和研究工作,主要承担《无机材料工学基础实验1》、《无机材料工学基础实验2》和《无机材料制备综合实验》等实验教学及指导本科生的生产实习、毕业论文等工作。自2015年开始,承担材料科学与工程专业的《材料化学基础实验1》、《材料化学基础实验2》、非金属模块课程实验的实验教学;目前指导硕士研究生6名、博士研究生4名。

        联系方式:

手机:13975152382

E-mail:fancl@hnu.edu.cn

教育背景

2006.09~2012.04  湖南大学  材料科学与工程专业  博士研究生

2002.09~2004.12  湖南大学  材料学专业                  硕士研究生

1995.09~1999.06  湖南大学  化学专业                      大学本科

工作履历

2014.12~至今       湖南大学  高级实验师

2009.07~2014.12  湖南大学  工程师

2005.03~2009.07  湖南大学  助理工程师

1999.07~2002.08  湖南华天集团


学术兼职

国家自然科学基金函评专家,教育部学位中心学位论文评议专家,Advanced Energy MaterialsACS Applied Energy MaterialsJournal of Power SourcesElectrochimica ActaJournal of Alloys and CompoundsApplied Surface Science等期刊评审专家。

研究领域

主要研究领域:锂(钠)离子电池正、负极材料、电解液,新型炭材料。

主要研究材料:

1、锂离子电池

正极材料:磷酸铁锂(LiFePO4)、磷酸()锰锂(LiMn1-xFexPO4)、氟磷酸钒锂(LiVPO4F);

负极材料:石墨、硬炭;

电解液。

2、钠离子电池

正极材料:氟磷酸钒钠(Na3V2(PO4)2F3);

负极材料:硬炭。

研究概况

一、科研项目

1.  湖南省科技厅重点项目,锂离子电池正负电极与电解液的配套生产(主研)

2.   教育部重点项目,锂离子二次电池负极材料与电解液的相容性(主研)

3.   湖南省自然科学基金一般项目,高导电率LiFePO4/C的形成机制及其电化学性能(主持)

4.   国家自然科学基金面上项目,锂离子电池用低平台、高倍率硬炭基负极材料的形成机制及其电化学性能研究(主研)

  5.  国家自然科学基金面上项目,高电导率、高倍率性能LiVPO4F/C复合正极材料的结构调控及其电化学性能研究(主持)

  6.  国家自然科学基金面上项目,锂离子电池用类球形磷酸锰锂正极材料的结构构建与性能研究(主持)

  7.  企业横向合作项目,太阳能器件用转换锂电池(主持)

  8.  国家自然科学基金面上项目,以低成本炭源构建高电导率、优异电化学性能氟磷酸钒钠正极的结构、形貌调控机制及储钠性能研究(主持)


二、出版教材

  1. 范长岭主编. 《材料化学基础实验》. 长沙: 湖南大学出版社, 2020.9, 45.3万字。

 

三、授权发明专利

   1. 预嵌钠硬炭材料及其制备方法,专利号ZL201611237788.32020年)

   2. 预嵌锂硬炭材料及其制备方法和应用,专利号ZL201611239051.52020年)

   3. 制备掺杂改性LiVPO4F锂离子电池正极材料的方法,专利号ZL201710076238.62021年)

   4. 一种锂离子电池LiMnPO4正极炭包覆的制备方法,专利号ZL201910878497.X2021年)

   5. 一种电解液及锂离子电池,专利号ZL202010055270.82021年)

   6. 一种锂离子电池电解液及锂离子电池,专利号ZL202010421446.72021年)

   7. 一种电解液及锂离子电池,专利号202010636269.42021年)



学术成果


1.      徐仲榆*, 范长岭, 苏玉长. 石墨制品废料用作锂离子电池负极活性材料的研究. 炭素, 2004, (4): 3-9.

2.      徐仲榆*, 范长岭, 尹笃林. 锂离子电池中电解液与石墨类负极活性材料的相容性. 新型炭材料, 2004, 19(4): 241-248.

3.      尹笃林, 范长岭, 徐仲榆*. 锂离子电池首次充、放电时石墨负电极与电解液界面所发生的反应. 炭素技术, 2005, 24, (6): 9-16.

4.      徐仲榆*, 范长岭. 多壁纳米碳管用作LIB负极活性材料的研究进展. 成都: 中国电工技术学会碳-石墨材料专业委员会 20届炭-石墨材料学术会论文集, 2006: 119-125.

5.      范长岭, 徐仲榆*. 乙炔黑在锂离子电池负极中的贮锂功能. 炭素技术, 2007, 26(1): 19-21.

6.         范长岭. LIB正极材料与LiBF4作溶质电解液的匹配性研究. 湖南有色金属, 2007, 23(4): 39-42, 67.

7.        C.-L. Fan, Z.-Y. Xu*. An Investigation on Carbon Black Electrode/Electrolyte Interfaces. Tianjin: The 14th international meeting on lithium batteries (IMLB 2008), 2008: 512.

8.        范长岭, 徐仲榆*, 苏玉长. 用石墨加工废料生产LIB用人造石墨细粉的现况. 大理: 中国金属学会炭素材料分会第二十二次学术会, 2008: 70-78.

9.        范长岭, 徐仲榆*, . 棉炭磺酸的制备、表征及其酸催化性能. 炭素, 2009: (1): 3-7, 38.

10.     范长岭, 苏玉长, 徐仲榆*. 有关石墨材料负电极中应否添加乙炔黑的问题. 湖南大学学报(自然科学版), 2009, 36(2):66-69.

11.     徐仲榆*, 范长岭, . 影响LIB负极用石墨类活性材料比放电容量的一些重要因素. 厦门: 第九届全国新型炭材料学术研讨会, 2009: 122-126.

12.     徐仲榆*, 范长岭. 用激光法测定石墨微粉粒度分布特性时单宁酸所起的分散作用. 炭素技术, 2009, 28(6): 1-5.

13.    范长岭, 徐仲榆*, . 聚苯胺在LiFePO4/C正极中的双重功能. 湖南大学学报(自然科学版), 2010, 37(12): 55-60.

14.    范长岭, 徐仲榆*, . 聚苯胺在LiCoO2LiMn2O4正极中的双重功能. 中国有色金属学报, 2011, 21 (4): 796-803.

15.    Zhongliu Wen, Shaochang Han, Changling Fan, Zhongyu Xu*. Dispersive Action of Sodium Dodecyle Bezene Sulfonate for Determining the Granularity Distribution Characteristic of Artificial Graphite Powder with Laser Method. Shanghai: Carbon 2011, Annual World Conference on Carbon, 306, 2011.

16.    Chang-ling Fan*, et al. Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries. Journal of Materials Science, 2011, 46(7): 2140-2147.

17.     Yan Cai, Chang-ling Fan. Influences of conductive additives on electrochemical performances of artificial graphite anode with different shapes for lithium ion batteries. Electrochimica Acta, 2011, 58: 481-487.

18.     Chang-ling Fan*, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochimica Acta, 2012, 75: 311-315.

19.     Chang-ling Fan, Shao-chang Han*, et al. Structure and Electrochemical Performances of LiFePO4/C Composite Cathode Coating with Different Carbon Sources for Lithium Ion Batteries. Advanced Materials Research, 2013, 652-654: 865-870.

20.     Chang-ling Fan*, et al. Comprehensive methods to enhance the electrochemical performances of LiFe0.94Mg0.03Cu0.03PO4/C cathode for lithium ion batteries. Materials Research Bulletin, 2013, 48(7): 2497-2503.

21.     Chang-ling Fan*, et al. Structure and electrochemical performances of LiFe1-2xTixPO4/C cathode doped with high valence Ti4+ by carbothermal reduction method. Journal of Alloys and Compounds, 2013, 576: 18-23.

22.     Chang-ling Fan*, et al. Influence of conductive electroactive polymer polyaniline on electrochemical performance of LiMn1.95Al0.05O4 cathode for lithium ion batteries. Bulletin of Materials Science, 2013, 36(6): 1005-1011.

23.     Chang-ling Fan*, et al. Structure, conductive mechanism and electrochemical performances of LiFePO4/C doped with Mg2+, Cr3+ and Ti4+ by a carbothermal reduction method. New Journal of Chemistry, 2014, 38(2): 795-801.

24.     Chang-ling Fan*, et al. Influences of the molecular structure of carbon sources on the structure, morphology and performances of the Li3V2(PO4)3-C cathode for lithium ion batteries. New Journal of Chemistry, 2014, 38(9), 4336-4343.

25.     Lingfang Li, Changling Fan*, et al. Synthesis of Li3V2(PO4)3/C for use as the cathode material in lithium ion batteries using polyvinylidene fluoride as the source of carbon. New Journal of Chemistry, 2015, 39(4), 2627-2632.

26.     Chang-ling Fan*, et al. Structure and Performances of xLiFePO4/C·(1-x)Li3V2(PO4)3/C Cathode for Lithium-Ion Batteries by Using Poly(vinyl alcohol) as Carbon Source. Bulletin of the Korean Chemical Society, 2015, 36(11): 2664-2668.

27.     Chang-ling Fan*, et al. LiVPO4F/C cathode synthesized by a fast chemical reduction method for lithium-ion batteries. Materials Letters, 2016, 170: 35-38.

28.     Changling Fan*, et al. Poly(vinylpylrrolidone) as Surfactant in the Sol-Gel Preparation of Lithium Iron Phospate/Carbon Cathodes for Lithium-Ion Batteries. Energy Technology, 2016, 4(8): 973-979.

29.     Xiang Zhang, Changling Fan, Shaochang Han*. Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density. Journal of Materials Science, 2017, 52(17), 10418-10430.

30.     Qiyuan Li, Zheng Wen, Changling Fan*, et al. Chemical reaction characteristics, structural transformation and electrochemical performances of new cathode LiVPO4F/C synthesized by a novel one-step method for lithium ion batteries. RSC Advances, 2018, 8(13): 7044-7054.

31.     Zheng Wen, Qiyuan Li, Changling Fan*, et al. Improving the Electrochemical Performances of LiVPO4F/C Cathode by Doping AlF3 with Dual Functions for Lithium Ion Batteries. Energy Technology, 2018, 6(10): 1904-1912.

32.     Taotao Zeng, Changling Fan*, et al. Effect of environmental temperature on the content of impurity Li3V2(PO4)3/C in LiVPO4F/C cathode for lithium ion batteries. Frontiers in Chemistry, 2018, 6: DOI: 10.3389/fchem.2018.00283.

33.     Lingfang Li, Changling Fan*, et al. A Novel Composite Li3V2(PO4)3:Li2NaV2(PO4)3/C as Cathode Material for Li-Ion Batteries. Australian Journal of Chemistry, 2018, 71, 497-503.

34.     Wei-hua Zhang, Ting Luo, Chang-ling Fan*, et al. High-performance LiVPO4F/C cathode constructed by using polyvinylidene fluoride as carbon source and the influencing mechanism for lithium ion batteries. Journal of Alloys and Compounds, 2019, 778: 345-358.

35.     李玲芳, 范长岭*, . 喷雾干燥法制备球形Li3V2(PO4)3/C正极材料及其电化学性能. 化工进展, 2019, 38(3): 1482-1486.

36.     Muchu Tan, Weihua Zhang, Changling Fan*, et al. Boric Acid-Catalyzed Hard Carbon Microfiber Derived from Cotton as a High-Performance Anode for Lithium-Ion Batteries. Energy Technology, 2019.1.24, 2019, 7(3): 1801164.

37.     Rong Li, Changling Fan*, et al. Structure and performance of Na+ and Fe2+ co-doped Li1-xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries. Ceramics International, 2019, 45(8): 10501-10510.

38.     Lingfang Li, Changling Fan*, et al. Synthesis and characterization of PVDF-coated cotton-derived hard carbon for anode of Li-ion batteries. International Journal of Energy Research, 2019, 43: 4987-4994.

39.     Lingfang Li, Changling Fan*, et al. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose. Materials Chemistry and Physics, 2020, 242: 122380.

40.     Lingfang Li, Zhipeng Yuan, Changling Fan*. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 6449-6460.

41.     Xi Chen, Yu Tang, Changling Fan*, et al. A highly stabilized single crystalline nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode through a novel surface spinel-phase modification. Electrochimica Acta, 2020, 341: 136075.

42.     Ting Luo, Tao-tao Zeng, Chang-ling Fan*, et al. Structure, performance, morphology and component transformation mechanism of LiMn0.8Fe0.2PO4/C nanocrystal with excellent stability. Journal of Alloys and Compounds, 2020, 834: 155143.

43.     Wen-xing Zhan, Chang-ling Fan*, et al. Ultra-long cycle life and high rate performance subglobose Na3V2(PO4)(2)F-3@C cathode and its regulation. International Journal of Energy Research, 2020, 44(8): 6608-6622.

44.     Lingfang Li, Changling Fan*, et al. Hydro-thermal synthesis of SnO2@hard-carbon ultrafine composites for anodic performances in lithium-ion batteries. Materials Express, 2020, 10(10): 1677-1684.

45.     李玲芳, 曾斌, 原志朋, 范长岭*. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究. 材料研究学报, 2020, 34(8): 591-598.

46.     李玲芳, 曾斌, 原志朋, 胡壮, 范长岭*. 锂离子电池负极材料SnO2纳米单晶@硬炭的合成以及水系粘结剂对其电化学性能的影响. 功能材料, 2020, 51(9): 09208-09213.

47.     Weihua Zhang, Zhuang Hu, Changling Fan*, et al. Construction and Theoretical Calculation of an Ultra-High-Performance LiVPO4F/C Cathode by B-Doped Pyrolytic Carbon from Poly(vinylidene Fluoride). ACS Applied Materials & Interfaces, 2021, 13, 15190-15204.

48.     Guo-dong Yi, Chang-ling Fan*, et al. Construction of high performance N-doped Na3V2(PO4)2F3/C cathode assisting by plasma enhanced chemical vapor deposition for sodium-ion batteries. Electrochimica Acta, 2021, 383, 138370.

49.     Run-zhen Fan, Chang-ling Fan*, et al. Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 876: 160090.

50.     Weihua Zhang, Peng Gao, Zhuang Hu, Changling Fan*, et al. Construction of superior performance LiVPO4F/C cathode assisting by a regulating additive NH4F and the “Combination-Protection-Release” mechanism for lithium ion batteries. Journal of Power Sources, 2022, 523: 231024.

51.     Zhipeng Yuan, Zhuang Hu, Changling Fan*, et al. Graphitic carbon nitride-derived high lithium storage capacity graphite material with regular layer structure and the structural evolution mechanism. Electrochimica Acta, 2022, 409: 139985.

52.     Simeng Pang, Zhuang Hu, Changling Fan*, et al. Insights into the sodium storage mechanism of Bi2Te3 nanosheets as superior anodes for sodium-ion batteries. Nanoscale, 2022, 14, 1755-1766.


奖励与荣誉

硕士学位论文获2007年湖南省优秀硕士学位论文,获得湖南大学2015年度实验室管理先进工作者、2014年湖南省自然科学奖三等奖。