header
艾正涛

发布于:2019-05-17 星期五 16:50:35 点击数:4893

艾正涛博士的研究兴趣为建筑环境健康与安全领域的交叉学科问题,具体研究方向包括传染病人际间交叉感染与监测预警、人体微环境及其个性化控制、街谷微气候与建筑空气动力学、建筑通风节能策略与技术等。在高密高层建筑通风与污染物室内外耦合传播、呼吸道传染病人际间非稳态传播、高能效建筑通风技术方面取得一定成果。正在主持国家自然科学基金1项和湖南大学启动基金1项,正参与IEA-EBC Annex 80和丹麦Ramboll基金等国际合作项目。本课题组招收暖通、生物、公共卫生等背景的硕士、博士及博士后。


基本信息

姓名:艾正涛

学位:博士

职称:教授、博士生导师

研究领域:建筑环境健康与安全

通讯地址:湖南省长沙市岳麓区麓山南路湖南大学土木工程学院,410082

邮箱:zhengtaoai@hnu.edu.cn

教育背景

2012.07 - 2015.05,香港理工大学屋宇设备工程系,博士 (导师:Cheuk-ming Mak教授, Jianlei Niu讲座教授, Kenny Kwok教授 (悉尼大学))

2008.09 - 2011.03,同济大学供热供燃气通风及空调工程系,硕士 (导师:李峥嵘教授)

2009.09 - 2010.08,香港理工大学屋宇设备工程系,硕士交流学习

2004.09 - 2008.06,西南交通大学建筑环境与设备工程系,学士

2008.02 - 2008.06,新加坡淡马锡理工学院燃料电池中心,本科交流学习

工作履历

2019.05 - 至今,湖南大学建筑环境与能源工程系,教授、博士生导师、岳麓学者

2016.10 - 2019.04,丹麦技术大学国际室内环境与能源中心,欧盟玛丽居里学者 (合作教授:Arsen Melikov教授)

2015.05 - 2016.10, 香港理工大学屋宇设备工程系,博士后研究员 (合作教授:Cheuk-ming Mak教授)

2011.09 - 2012.05, 香港理工大学屋宇设备工程系,研究助理

学术兼职

[9] 国际期刊Energy and Built Environment助理编辑Assistant Editor

[8] 国际室内空气品质与气候学会(ISIAQ)会员

[7] 国际建筑性能模拟学会(IBPSA)会员

[6] 环境科学学会室内环境与健康分会会员

[5] 建筑学会会员

[4] 欧盟玛丽居里学委会(MCAA)会员

[3] Indoor Air、Healthy Buildings、华人能源与人工环境等国际会议学术委员会委员、会场主席

[2] 比利时FWO等国家基金申请书国际通信评审人

[1] 建筑环境健康与节能领域20SCI期刊及包括Indoor Air在内的多个国际会议审稿人

研究领域

健康建筑和健康城市是国家高质量发展战略和健康中国战略的重要内容和实现载体。随着城镇化的快速推进及航空铁路运输的迅猛发展,城市建筑变得又高又密,空气流通性越来越差,加之城市人口密度大、流动性高,为健康建筑和健康城市带来严峻挑战。一方面,低空气流通性和高人员流动性极有利于呼吸道传染病的扩散,威胁居民健康和公共安全;另一方面,低空气流通性的城市环境不利于污染物在街谷中的稀释,为建筑室内环境造成恶劣的通风边界条件。聚焦建筑环境面临的这两方面问题,通过学科交叉研究,结合工程科学的“源头治理”和医学的“预防优先”思想和方法,从人与周围环境相互作用关系的角度开展基础研究,并发展健康建筑环境高效营造和维持的创新解决方法和技术。具体研究重点包括:

(1)传染病人际间交叉感染与监测预警

(2)人体微环境及其个性化控制

(3)街谷微气候与建筑空气动力学

(4)建筑通风节能策略与技术

科研项目

[12] 国家自然科学青年基金(51908203),短期事件中传染病空气传播规律及时均暴露剂量不确定性研究,2020-2022,在研,主持

[11] 湖南大学科研启动基金,建筑环境健康与节能,2019起,在研,主持

[10] 国际能源署,IEQ-EBC ANNEX80Resilient Cooling for Residential and Small Commercial Buildings, 2019-2023在研,主研

[9] 丹麦Ramboll基金,Improved methodology for CO2 based design of building ventilation2018-2020,在研,参与

[8] 丹麦技术大学和欧盟玛丽居里行动计划联合资助(FP7/2007-2013: No.609405), Dynamics and time scales of airborne transmission in indoor environments, 2016-2019, 已结题,主持

[7] 联合国食品和农业组织(FAO)Community-level risks of aerosolized transmission of zoonotic HPAI H5N1 in farms and live bird markets (LBMs)2015-2018,已结题,主研

[6] 香港-环境及自然保育基金(ECF 18/2014)Envelope design to improve ventilation performance of residential buildings in dense urban environment2015-2017,已结题,主研

[5] 香港-大学教育资助委员会(RGC-CRF: No. C5002-14GF)Development of design methodologies for the improvement of wind and thermal comfort in the urban environment2015-2018,已结题,主研

[4] 香港-环境及自然保育基金(ECF 23/2011)Green features for sustainable daylighting design in buildings2013-2015,已结题,参与

[3] 香港-环境及自然保育基金(ECF 23/2009)Green features for improvement of air quality in buildings2011-2013,已结题,主研

[2] 香港理工大学基金(PolyU: GU841)Prediction of flow-generated noise produced by in-duct rigid spoilers using Computational Fluid Dynamics2011-2013,已结题,参与

[1] 香港理工大学基金(PolyU: SURF No. 1-ZV4S)Development of designed features for sustainable green buildings2009-2012,已结题,主研

学术成果

在高密度高层建筑通风与污染物室内外耦合传播以及人际间交叉感染与人员吸入暴露方面取得一定成果,改进了针对高密度建筑通风与污染物传播的预测方法,揭示了高密度建筑室内外气流和污染物动态交换机理,建立了短期事件传染病空气传播的实验研究方法和评估模型,揭示了不同人群和特定场合的交叉感染特征和防控重点,发展了居住建筑空调期机械通风新方法;主持/主研欧盟及香港资助的科研项目10余项,共发表学术论文70余篇,入选欧盟玛丽居里学者(2016)。

[22] Z.T. Ai*, C.M. Mak, N.P. Gao, J.L. Niu, 2020, Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment. Building Simulation, In press.

[21] Z.T. Ai*, T. Huang, A.K. Melikov, 2019, Airborne transmission of exhaled droplet nuclei between occupants in a room with horizontal air distribution. Building and Environment, Accepted.

[20] Z.T. Ai*, K. Hashimoto, A.K. Melikov, 2019, Influence of pulmonary ventilation rate and breathing cycle period on the risk of cross-infection. Indoor Air, Accepted.

[19] Z.T. Ai*, K. Hashimoto, A.K. Melikov, 2019. Airborne transmission between room occupants during short-term events: measurement and evaluation. Indoor Air, 29(2019), 563-576.

[18] Y.W. Dai, C.M. Mak, Z.T. Ai, 2019. Flow and dispersion in coupled outdoor and indoor environments: issue of Reynolds number independence. Building and Environment, 150, 119-134.

[17] Z.T. Ai*, A.K. Melikov, 2018. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: a review. Indoor Air, 28(4), 500-524.

[16] Z.T. Ai, C.M. Mak, 2018. Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design. Journal of Wind Engineering and Industrial Aerodynamics, 172, 96-106.

[15] Z.T. Ai, C.M. Mak, 2017. CFD simulation of flow in a long street canyon under a perpendicular wind direction: Evaluation of three computational settings. Building and Environment, 114, 293-306.

[14] Z.T. Ai, C.M. Mak, 2016. Short-term mechanical ventilation of air-conditioned residential buildings: A general design framework and guidelines. Building and Environment, 108, 12-22.

[13] Z.T. Ai, C.M. Mak, D.J. Cui, P. Xue, 2016. Ventilation of air-conditioned residential buildings: A case study in Hong Kong. Energy and Buildings 127, 116-127.

[12] Z.T. Ai, C.M. Mak, 2016. Large eddy simulation of wind-induced interunit dispersion around multistory buildings. Indoor Air, 26:259-273.

[11] Z.T. Ai, C.M. Mak, 2015. From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: Issues and possibilities for improvement. Building and Environment 94, 489-503.

[10] Z.T. Ai, C.M. Mak, 2015. Large-eddy simulation of flow and dispersion around an isolated building: Analysis of influencing factors. Computers and Fluids 118, 89-100.

[9] Z.T. Ai, C.M. Mak, D.J. Cui, 2015. On-site measurements of ventilation performance and indoor air quality in naturally ventilated high-rise residential buildings in Hong Kong. Indoor and Built Environment 24(2), 214-224.

[8] Z.T. Ai, C.M. Mak, 2014. Potential of using reduced-scale models in CFD simulations in saving numerical resources: Theoretical analysis and case study for flow around an isolated building. Journal of Wind Engineering and Industrial Aerodynamics 134, 25-29.

[7] Z.T. Ai, C.M. Mak, 2014. A study of interunit dispersion around multistory buildings with single-sided ventilation under different wind directions. Atmospheric Environment 88, 1-13.

[6] Z.T. Ai, C.M. Mak, 2014. Modelling of coupled urban wind flow and indoor air flow on a high-density near-wall mesh: sensitivity analyses and case study for single-sided ventilation. Environmental Modelling and Software 60, 57-68.

[5] Z.T. Ai, C.M. Mak, 2014. Analysis of fluctuating characteristics of wind-induced airflow through a single opening using LES modeling and the tracer gas technique. Building and Environment 80, 249-258.

[4] Z.T. Ai, C.M. Mak, 2014. Determination of single-sided ventilation rates in multistory buildings: Evaluation of methods. Energy and Buildings 69, 292-300.

[3] Z.R. Li, Z.T. Ai*, W.J. Wang, Z.R. Xu, X.Z. Gao, H.S. Wang, 2014. Evaluation of airflow pattern in wind-driven naturally ventilated atrium buildings: measurement and simulation. Building Services Engineering Research and Technology 35(5), 139-154.

[2] Z.T. Ai, C.M. Mak, J.L. Niu, 2013. Numerical investigation of wind-induced airflow and interunit dispersion characteristics in multistory residential buildings. Indoor Air 23, 417-429.

[1] Z.T. Ai, C.M. Mak, 2013. CFD simulation of flow and dispersion around an isolated building: Effect of inhomogeneous ABL and near-wall treatment. Atmospheric Environment 77, 568-578.

奖励与荣誉

[1] 玛丽居里学者,欧盟研资局,2016

[2] 岳麓学者,湖南大学,2019